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Why do we care?
• Galaxy formation is not a 1D manifold (aka assembly bias)
• AM stratification drives morphology
• Weak lensing
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NGC 891Spiral galaxy

Different Angular momentum stratification
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The Virtual (hydrodynamical) universe

we see steady cold flows + recurrent disk reformation
LSS drives secondary infall & SPIN ALIGNMENT

KIAS Nov 1st 2016

tdyn ⇠ 1/
p
⇢

log density

Tuesday, 1November, 16



The fate of
cold gas along LSS

Tuesday, 1November, 16



void

wall

filament

CGM

Gas tracing 
particle:
follow shocks

Typical setting: 
one wall one 
filament

KIAS Nov 1st 2016

Disks form along filaments  embedded in walls with spin // to filament

2 C. Pichon, D. Pogosyan, T. Kimm, A. Slyz, J. Devriendt and Y. Dubois

contrast, if this material comes in cold, star formation can be
fueled on a halo free-fall time. Cold-mode accretion should
also have an important impact on the properties (scale
length, scale height, rotational velocity) of galactic discs, if as
conjectured by Kereš et al. (2005), cold streams merge onto
disks “like streams of cars entering an expressway”, convert-
ing a significant fraction of their infall velocity to rotational
velocity. Dekel et al. (2009) argued along the same lines in
their analysis of the HORIZON-MareNostrum simulation: the
stream carrying the largest coherent flux with an impact pa-
rameter of a few kiloparsecs may determine the disc’s spin
and orientation. Powell et al. (2010) spectacularly confirmed
these conjectures by showing that indeed, the filaments con-
nect rather smoothly to the disc: they appear to join from dif-
ferent directions, coiling around one another and forming a
thin extended disc structure, their high velocities driving its
rotation.

The way angular momentum is advected through the
virial sphere as a function of time is expected to play a key
role in re-arranging the gas and dark matter within dark mat-
ter halos. The pioneer works of Peebles (1969); Doroshkevich
(1970); White (1984) addressed the issue of the original spin
up of collapsed halos, explaining its linear growth up to the
time the initial overdensity decouples from the expansion of
the Universe through the re-alignment of the primordial per-
turbation’s inertial tensor with the shear tensor. However, lit-
tle theoretical work has been devoted to analysing the out-
skirts of the Lagrangian patches associated with virialised
dark matter halos, which account for the later infall of gas
and dark matter onto the already formed halos. In this pa-
per, we quantify how significant this issue is and present a
consistent picture of the time evolution of angular momen-
tum accretion at the virial sphere based on our current the-
oretical understanding of the large scale structure dynamics.
More specifically, the paper presents a possible answer to the
conundrum of why cold gas flows in Λ-CDM universes are
consistent with thin disk formation. Indeed, as far as galactic
disc formation is concerned, the heart of the matter lies in un-
derstanding how and when gas is accreted through the virial
sphere onto the disc. In other words, what are the geometry
and temporal evolution of the gas accretion?

In the ’standard’ paradigm of disc formation, this ques-
tion was split in two. The dark matter and gas present in the
virialised halo both acquired angular momentum through
tidal torques in the pre-virialisation stage, i.e. until turn-
around (e.g White 1984). The gas was later shock-heated as
it collapsed, and secularly cooled and condensed into a disk
(Fall & Efstathiou 1980) having lost most of the connection
with its anisotropic cosmic past. In the modern cold mode
accretion picture which now seems to dominate all but the
most massive halos, these questions need to be re-addressed.
This paper presents a new scenario in which the coherency
in the disk build-up stems from the orderly motion of the fil-
amentary inflow of cold gas coming from the outskirts of the
collapsing galactic patch. The outline is as follows: in section
2, using hydrodynamical simulations, we report evidence
that filamentary flows advect an ever increasing amount of
angular momentum through the halo virial sphere at redshift
higher than 1.5. We also demonstrate that the orientation of
these flows is consistent, i.e. maintained over long periods of
time. Section 3 presents results obtained through simplified
pure dark matter simulations of the collapse of a Lagrangian

Figure 1. A typical galaxy residing in a high mass halo (M ∼
2 × 1012 M# at z = 3.8). The radius of the circle in the both pan-
els corresponds to Rvir = 79 kpc. Gas (left panel), and dark matter
(right panel) projected densities are plotted. Gas filaments are signif-
icantly thinner than their dark matter counterpart. Note the extent
and the coherence of the large scale gaseous filaments surrounding
that galaxy.
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Figure 3. The covariances (thick line) between different redshifts
(as labeled) of the thresholded density maps on the virial sphere,
Rvir, together with the corresponding dispersion (inter-quartile, dot-
ted lines). The lower bound of the thresholded density is chosen
such that filamentary structures stand out, while the upper bound
is adopted to minimise the signal from the satellites (see the text,
Section 2). The orientation of filaments is temporally coherent, as is
qualitatively illustrated in Figure 2.

patch associated with a virialised halo as these have the merit
of better illustrating the dynamics of matter flows in the out-
skirts of the halo. Section 4 is devoted to the presentation of
the conjectured impact of this scenario on disk growth at var-
ious redshifts, conclusions and prospects.

2 HYDRODYNAMICAL EVIDENCE

Let us start by briefly reporting the relevant hydrody-
namical results we have obtained. We statistically anal-
ysed the advected specific angular momentum of both gas
and dark matter at the virial radius of dark haloes in the
HORIZON-MareNostrum cosmological simulation at redshift
6.1, 5.0, 3.8, 2.5 and 1.5 (see Figure 1, Details can be found in
Kimm et al. 2011).

The HORIZON-MareNostrum simulation (Ocvirk et al.
2008; Devriendt et al. 2010) was carried out using the Eule-
rian hydrodynamic code, RAMSES (Teyssier 2002), which uses
an Adaptive Mesh Refinement (AMR) technique. It followed
the evolution of a cubic cosmological volume of 50h−1 Mpc

≠
Gas DM
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loci of 3rd 
shock

Note the high helicity of  flow: 
 AM rich quasi-polar accretion Explain this !
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Disks form because LSS are large (dynamically young)
 and (partially) an-isotropic :

they induce persistent angular momentum
advection of cold gas along filaments  which stratifies

accordingly so as to (re)build discs continuously.

This is the raison d’être of cosmic web :-)

Typically one wall one 
filament:

dynamical implication?

 HINT: initial galactic infall is AM rich 
& quasi polar in the CGM

spin // to embedding filament 
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Tidal Torque Theory in one cartoon

YES! via conditional TTT subject to PBS 
Et Voilà !(Hoyle 56, Peebles 69, Doroshkevich 70, White 84).
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Peak background split

(PBS)  in 1D

+

dark halos don't form anywhere

threshold for collapse

See also:
 Kaiser 84, White 88, Efstathiou+98,...
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Peak background split in 3D

Does this anisotropic biassing have 
a dynamical signature?  yes! in term of spin!
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Orientation of the spins w.r.t the filaments

Horizon 4Pi: 
DM only

2 Gpc/h periodic box
40963 DM part.

43 million dark halos at 
z=0

(Teyssier et al, 2009)
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Excess probability of alignment between the spins 
and their host filament

mass transition:

Mcrit = 4 · 1012M�

: aligned

: perpendicularM > Mcrit

M < Mcrit
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(Codis et al, 2012)
 See also: Aragon-Calvo+07, Hahn+07, Sousbie+08, Paz+08, Zhang+09, Libeskind+13, Aragon-Calvo 
13, Dubois+14
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horizon 4π

Explain transition mass?

Codis et al 12’
skeleton of LSS

Transition mass versus redshift:

transition mass

redshift

x10
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horizon 4π

Explain transition mass?

Codis et al 12’
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                                                what's wrong??? 

mass of non-linearity

Transition mass versus redshift:
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Tidal torque theory with a
peak background split near a 
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The Idea
walls/filament/peak locally bias differentially 
tidal and inertia tensor: spin alignment reflect this in TTT

The picture
Geometry of spin near saddle: point reflection 
symmetric distribution,   1/10 of 'naive size'

The Maths
2D theory

3D theory

Very simple ab initio prediction for mass transition 

The Lagrangian view of spin/LSS connection
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How to sum up wall & filaments in one
point process? 
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flattened saddle point

BBKS like theory possible for spin
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How to sum up wall & filaments in one
point process? 
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flattened saddle point

BBKS like theory possible for spin

TTT in vicinity of filament?
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Spin structure
 near Saddle
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Spin structure
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3D TTT@ saddle?
• point reflection symmetric
• vanish if no a-symmetry

 (round filament)
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3D TTT@ saddle?
• point reflection symmetric
• vanish if no a-symmetry
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point reflection symmetry
for realistic sets of saddles

from log GRF

Does it work with 
log-Gaussian

Random Fields?

spin flips!

2D
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point reflection symmetry
for realistic sets of saddles

from log GRF
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Figure 22. Alignment of the spin along the filamentary direction
depending on the considered octant. As predicted by the theory,
the z-component of the spin is flipping sign from one octant to
the other.

x, y, z > 0 (#1), x < 0 & y, z > 0 (#2), x, y < 0 & z > 0
(#3), y < 0 & x, z > 0 (#4), z < 0 & x, y > 0 (#5),
x, z < 0 & y > 0 (#6), x, y, z < 0 (#7) and y, z < 0 & x > 0
(#8).

Fig. 22 shows that, as expected, the component of the
spin aligned with the filament axis is flipping sign from one
octant to the other.

5.2 Validation on dark matter simulations at z = 0

Let us now identify the Eulerian implication at redshift zero
of the above sketched Lagrangian theory. For this we must
rely on N-body simulations. Hence we now make use of the
43 million dark matter haloes detected at redshift zero in
the Horizon 4⇡ N-body simulation (Teyssier et al. 2009) to
test some of the outcomes of the Anisotropic Tidal Torque
Theory presented in this paper. This simulation contains
40963 DM particles distributed in a 2 h�1Gpc periodic box
and is characterized by the following ⇤CDM cosmology:
⌦m = 0.24, ⌦⇤ = 0.76, n = 0.958, H0 = 73 km·s�1·Mpc�1

and �8 = 0.77 within one standard deviation of WMAP3
results (Spergel et al. 2003). The initial conditions were
evolved non-linearly down to redshift zero using the adap-
tive mesh refinement code RAMSES (Teyssier 2002), on a
40963 grid. The motion of the particles was followed with
a multi grid Particle-Mesh Poisson solver using a Cloud-In-
Cell interpolation algorithm to assign these particles to the
grid (the refinement strategy of 40 particles as a threshold
for refinement allowed us to reach a constant physical reso-
lution of 10 kpc, see the above mentioned two references).

The Friend-of-Friend Algorithm (Huchra & Geller 1982)
was used over 183 overlapping subsets of the simulation with
a linking length of 0.2 times the mean interparticular dis-
tance to define dark matter haloes. In the present work, we
only consider haloes with more than 40 particles (the parti-
cle mass being 7.7⇥ 109M�). The mass dynamical range of
this simulation spans about 5 decades.

The filament’s direction is then defined via the global
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Figure 23. Alignment of ‘spin’ along e
�

in the Horizon-4⇡ sim-
ulation. The normalised histogram of the cosine of the angle be-
tween the spins and the closest filament’s direction is displayed.
Deviations from the ⇠ = 0 uniform distribution are detected and
depends on the dark matter halo mass. Haloes have a spin aligned
with the e

�

direction on average at low-mass (red) and perpen-
dicular to it at larger mass (blue).

skeleton algorithm introduced by Sousbie et al. (2009) and
based on Morse theory. It defines the skeleton as the set of
critical lines joining the maxima of the density field through
saddle points following the gradient. In practice Sousbie
et al. (2009) define the peak and void patches of the den-
sity field as the set of points converging to a specific local
maximum/minimum while following the field lines in the di-
rection/opposite direction of the gradient. The skeleton is
then the set of intersection of the void patches i.e. the sub-
set of critical lines connecting the saddle points and the local
maxima of a density field and parallel to the gradient of the
field. In practice, the ⇠70 billion particles of the Horizon-4⇡
were sampled on a 20483 cartesian grid and the density field
was smoothed over 5 sigmas using mpsmooth (Prunet et al.
2008), corresponding to a scale of 5 h�1Mpc and a mass of
1.9 ⇥ 1014M�. This cube was then divided into 63 overlap-
ping sub-cubes and the skeleton was computed for each of
these sub-cubes. It was then reconnected across the entire
simulation volume to produce a catalog of segments which
locally defines the direction of the filaments.

Figure 23 demonstrates that the spins of the 43 million
dark halos of the simulation obey the expected mass flip
predicted by the theory presented in Section 4. On top of
the alignment with the filament direction found e.g in Codis
et al. (2012), haloes are shown to have a spin increasingly
perpendicular to e

�

at low-mass (red) and up to the critical
mass (' 1012M�), while high-mass haloes have a spin par-
allel to the e

�

direction. The transition from alignment to
orthogonality occurs around Mtr ' 5 · 1012M�.

Figure 24 shows that the spins tend to be more aligned
with the filament axis when getting closer to the saddle
point. The alignment decreases from cos ✓ = 0.511 at r ' 20
Mpc/h to cos ✓ = 0.506 at r < 1 Mpc/h. This qualitative
trend is in full agreement with the anisotropic tidal torque

© 0000 RAS, MNRAS 000, 000–000
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Figure 24. Alignment of the spins and the filaments in the
Horizon-4⇡ simulation as a function of the distance to the clos-
est saddle point (from red – 0Mpc/h – to blue –10 Mpc/h –).
The alignment decreases with the distance to the saddle point as
predicted by the anisotropic tidal torque theory model.

theory picture presented in Section 4 for which on average,
spins are aligned with the filament axis in the plane of the
saddle point and become misaligned when going away from
this saddle point.

Figure 25 displays the occupancy of halos along the
filaments. It appears that the higher the mass, the more
concentrated they are far from the saddles. This is in good
agreement with the halo mass gradient along the filaments
described in Section 4.3.2.

Overall, the above GRF experiments as well as the re-
analysis of the Horizon 4⇡ N-body simulation seem consis-
tent with the prediction of the theory presented in Sec. 3 and
4. While the former demonstrates that interferences from
neighbouring saddles do not wash out the tide correlations,
the latter suggests that on the scales probed by this exper-
iment, this Eulerian measure still captures features of the
underlying Lagrangian theory.

6 CONCLUSIONS AND PERSPECTIVES

Tidal Torque Theory was revisited while focussing on an
anisotropic peak background split in the vicinity of a sad-
dle point. Such critical point captures as a point process
the geometry of a typical filament embedded in a given
wall (Pogosyan et al. 1998). The induced mis-alignment be-
tween the tidal tensor and the hessian of the density simply
explains the surrounding transverse and longitudinal point
reflection-symmetric geometry of the spin distribution near
filaments. This geometry of the spin field predicts in par-
ticular that less massive galaxies have their spin parallel to
the filament, while more massive ones have their spin in the
azimuthal direction. The corresponding transition mass fol-
lows from this geometry together with its scaling with the
mass of non linearity, in good agreement with measurements
in simulations.
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Figure 25. (Log-) Fraction of halos of di↵erent mass (from red to
blue in solar mass units) as a function of the distance to the saddle
point in the Horizon-4⇡ simulation. Low-mass haloes (red) lie
almost uniformly along the filaments (with a small concentration
–not clearly seen in logarithmic units– around the saddles due
to consumption when going towards the nodes) while high-mass
haloes (blue) are more concentrated far from the saddles.

The main findings of this paper are: i) galaxies form
near filaments embedded in walls, and flow towards the
nodes: this anisotropic environment produces the long wave
modes on top of which galactic halos pass the turnaround
threshold; ii) a typical filament is elongated and flattened:
as a point process, it is therefore best characterized by its
triaxial saddle point; iii) the spin geometry is octupolar in
the vicinity of the saddle point, displaying a point reflection
symmetry; iv) the mean spin field is parallel to the filament
axis in the plane of the saddle point and becomes azimuthal
away from it; v) this anisotropic version of the tidal torque
theory allows to accurately predict the transition mass of
the spin-filament alignment measured in simulations. vi) this
theory seems consistent with both GRF experiments and re-
sults from N-body simulations.

6.1 Discussion

One of the striking features of this anisotropic extension
of Tidal Torque Theory is the induced quadrupolar anti-
symmetric flattened geometry of the spin distribution near
a saddle point, which e↵ectively scales down the transi-
tion mass away from the mass of non-linearity by a factor
1/22⇥1/3, in qualitative agreement with the measured scal-
ing. The qualitative analysis derived from first principle in
the vicinity of a given saddle seems to hold when consid-
ering realizations of GRF, once proper account of the in-
duced geometry near such points is taken care of. In e↵ect,
we have shown that the geometry of the saddle point pro-
vides a natural ‘metric’ (the local frame as defined by the
hessian at that saddle point) relative to which we can mea-
sure dynamical evolution of dark halos along filaments. It
should allow us to study how galactic feeding (via helicoidal
cold flow, see Dubois et al. 2014) should vary with curvilin-

© 0000 RAS, MNRAS 000, 000–000
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TTT@ saddle?

subject to the  "saddle" constraints (2D)
height zero gradient

parametrized curvature
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Incredibly simple prediction ! 
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ⌫ = 1, �1 = �1 and �2 = �2 for a power spectrum with index
n = 1/2 computed from Equation (11). Contours are displayed from � = �1 to 1 by step of 1/4 as labeled. The x and y axes are
in units of the smoothing length. Right: corresponding mean spin colour coded from blue (negative) to red (positive) computed from
Equation (13). The flattening of the filament’s cross section induces a clear quadrupolar spin distribution in its vicinity.
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Figure 7. Evolution of the amount of algebraic angular momen-
tum in sphere of radius RTH centered on r

?

The density power
spectrum index is n = �3/2, the height of the peak in (0, 0) is
⌫ = 1 and principal curvatures �1 = �1,�2 = �2. The amplitude
of the spin is normalised by its maximum value around RTH = r

?

3.1.5 Zel’dovich mapping of the Spin

Figure 9 displays the image of the initial density field (resp.
initial spin field) translated by a Zel’dovich displacement.
The displacement is proportional to (�1,�2) here and its
expectation given a central peak is trivially computed from
the conditional PDFs. The resulting quadrupolar caustics is
qualitatively similar to the quadrupolar geometry of the vor-
ticity field measured in numerical simulations (Laigle et al.
2015). Indeed, as discussed in that paper, there is a dual
relationship between such Eulerian vorticity maps and the
geometry of the spin distribution within the neighbouring
patch of a 3D saddle point.

Figure 8. 2D spin dispersion (defined in Equation (17)) near a
2D peak of height ⌫ = 1 and curvatures �1 = �1 and �2 = �2
for a power spectrum with index n = 1/2

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical
point was given. Let us now build the joint statistics of the
spin and the mass near 2D peaks.

MNRAS 000, 000–000 (0000)

)
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ⌫ = 1, �1 = �1 and �2 = �2 for a power spectrum with index
n = 1/2 computed from Equation (11). Contours are displayed from � = �1 to 1 by step of 1/4 as labeled. The x and y axes are
in units of the smoothing length. Right: corresponding mean spin colour coded from blue (negative) to red (positive) computed from
Equation (13). The flattening of the filament’s cross section induces a clear quadrupolar spin distribution in its vicinity.
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3.1.5 Zel’dovich mapping of the Spin

Figure 9 displays the image of the initial density field (resp.
initial spin field) translated by a Zel’dovich displacement.
The displacement is proportional to (�1,�2) here and its
expectation given a central peak is trivially computed from
the conditional PDFs. The resulting quadrupolar caustics is
qualitatively similar to the quadrupolar geometry of the vor-
ticity field measured in numerical simulations (Laigle et al.
2015). Indeed, as discussed in that paper, there is a dual
relationship between such Eulerian vorticity maps and the
geometry of the spin distribution within the neighbouring
patch of a 3D saddle point.

Figure 8. 2D spin dispersion (defined in Equation (17)) near a
2D peak of height ⌫ = 1 and curvatures �1 = �1 and �2 = �2
for a power spectrum with index n = 1/2

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical
point was given. Let us now build the joint statistics of the
spin and the mass near 2D peaks.
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ⌫ = 1, �1 = �1 and �2 = �2 for a power spectrum with index
n = 1/2 computed from Equation (11). Contours are displayed from � = �1 to 1 by step of 1/4 as labeled. The x and y axes are
in units of the smoothing length. Right: corresponding mean spin colour coded from blue (negative) to red (positive) computed from
Equation (13). The flattening of the filament’s cross section induces a clear quadrupolar spin distribution in its vicinity.
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The Idea
walls/filament/peak locally bias differentially 
tidal and inertia tensor: spin alignment reflect this in TTT

The picture
Geometry of spin near saddle: point reflection 
symmetric distribution,   1/10 of 'naive size'

The Maths
2D theory

3D theory

Very simple ab initio prediction for mass transition 
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3D TTT@ saddle?
• point reflection symmetric
• vanish if no a-symmetry

AM
vectors

filament

Zel'dovich 
flow

saddle pointspin //
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Lagrangian theory 
capture spin flip ! 

Low mass patch

L / ez

3D Transition mass ?

Transition mass
associated 
with size 
of quadrant

KIAS Nov 1st 2016

Tuesday, 1November, 16



Lagrangian theory 
capture spin flip ! 

Low mass patch

L / ez

3D Transition mass ?

Transition mass
associated 
with size 
of quadrant

KIAS Nov 1st 2016

Tuesday, 1November, 16



Lagrangian theory 
capture spin flip ! 

Low mass patch

L / ez

3D Transition mass ?

Transition mass
associated 
with size 
of quadrant

High mass patch

L / e�

KIAS Nov 1st 2016

Tuesday, 1November, 16



Geometry of the saddle provides a natural ‘metric’ (local 
frame as defined by Hessian @ saddle) relative to which 

dynamical evolution of DH is predicted.

Shifted
Press-Schechter

near saddle

Anisotropic
Tidal torque theory

M(R, z)

R

z

hcos ✓(R, z)i

Cloud in 
cloud effect

geometric split                     mass split
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Transition mass versus redshift: problem solved!

horizon 4π

Explain transition mass?

Codis et al 12’
skeleton of LSS
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Link with Eulerian vorticity?
density caustic

AM Eulerian map

AM Lagragian
 map
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Link with Eulerian vorticity?
density caustic

AM Eulerian map

AM Lagragian
 map

10 S. Codis, C. Pichon and D. Pogosyan

Figure 9. Left: Stream lines of the 2D velocity field (defined as the potential gradient) near a 2D peak of height ⌫ = 1 and curvatures
�1 = �1 and �2 = �2 for a power spectrum with index n = 1/2. Right: Zel’dovich mapping of the spin distribution. There is a good
qualitative agreement between the vorticity section presented in Laigle et al. (2015) and this spin map.

3.2.1 Geometry of the most likely cross section

Let us now study what should be the typical geometry of a
peak. Following Pogosyan et al. (2009), it is straightforward
to derive the PDF for a point to have height ⌫ and geometry
, I1 as in their notation J2 = 2 so that

P(⌫,, I1) =


⇡
p

1� �2
exp

 

�1
2

 

⌫ + �I1
p

1� �2

!2

� 1
2
I21� 2

!

.

Now the PDF for a peak to have height ⌫ and geometry , I1
becomes:

P(⌫,, I1|pk) =
p
3|(I1 � )(I1 + )|

2⇡
p

1� �2
⇥(�� I1)⇥

exp

 

�1
2

 

⌫ + �I1
p

1� �2

!2

� 1
2
I21� 2

!

. (19)

The maximum of this PDF is trivially reached for ⌫̄ =
p

7/3 �, ̄ =
p

1/3 and Ī1 = �
p

7/3.

3.2.2 The size and area of constant polarity quadrants

From equation (14), it appears clearly that the extension of
the region of influence of the critical point is limited, and
peaks within each quadrant at some specific (r

?

, ✓
?

) position.
Moreover, for small enough , the quadrupole dominates,
and the extremum is along ✓ = ⇡/4. It is therefore possible
to use r

?

to define an area in which the spin is significantly
non zero within each quadrant. Let us compute r

?

, as the
radius for which s

z

(✓ = ⇡/4) is maximal as a function of r3.
The area of a typical quadrant, in which the spin has the

3 Setting ✓ = ⇡/4 e↵ectively neglect the octupolar part of s
z

.

same orientation, can then simply be expressed as

A = ⇡r2
?

, (20)

where r
?

= r
?

(⌫,) is the position of a maximum of angular
momentum from the peak. Because of the quadrupolar anti-
symmetric geometry of the angular momentum distribution
near the saddle point, it is typically twice as small (in units
of the smoothing length) as one would naively expect.

For power-law density power spectrum with spectral in-
dex in the range n 2]�2, 2], a good fit to its scaling is given
by

r
?

R
s

⇡ 3
250

(n� 5)2 +
13
10

, (21)

where r
?

was computed for the mean geometry given by
⌫̄ =

p

7/3 �, ̄ =
p

1/3 and Ī1 = �
p

7/3.

3.2.3 Critical mass scaling

The critical mass is the mass of maximum spin alignment.
In simulation, it has been shown by Laigle et al. (2015) to
be Mcrit ⇡ 1012M� at redshift 0. The authors claimed that
the critical mass is related to the mass contained in a typi-
cal quadrant of vorticity. In this work, we have computed in
Lagrangian space the typical area of a quadrant (see Equa-
tion 19). This area is a function of the smoothing scale. In
order to compute it, we need to define a scale. It is reason-
able that the maximum spin alignment should be reached
for filament that has just collapsed at redshift 0. Indeed, for
larger scale filaments, part of the haloes do not lie inside the
filament but in the nearby wall which will therefore decrease
the mean spin-filament alignment. In previous sections, we
focused on ⌫ = 0.9 filaments. The model of the cylindrical
collapse then say that those filaments have just collapsed at
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Alignement of vorticity  with cosmic web
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Wall section

Inner halo

Filament

Connecting Eulerian & 
Lagrangian theories

KIAS Nov 1st 2016

Tuesday, 1November, 16



Wall section

Outer halo
Inner halo

Filament

KIAS Nov 1st 2016

Tuesday, 1November, 16



Wall section

Outer halo
Inner halo

Lagrangian
Filament

Zel'dovich boost

KIAS Nov 1st 2016

Tuesday, 1November, 16



Filament

Wall section

KIAS Nov 1st 2016

Eulerian
Filament

Tuesday, 1November, 16



KIAS Nov 1st 2016

Tuesday, 1November, 16



Take home message...
• Morphology (= AM stratification) driven by LSS in cosmic 

web: explain Es & Sps where, how & why from ICs 

• Signature in correlation between spin and internal kinematic 
structure of cosmic web on larger scales. 

• Process driven by simple biassed clustering dynamics:

-  requires updating TTT to saddles:  simple theory  :-)
-  can be expressed into an Eulerian theory via vorticity

Where  galaxies form does matter, and can be traced back to ICs
Flattened filaments generate point-reflection-symmetric AM/vorticity distribution:

they induce the  observed spin transition mass  

KIAS Nov 1st 2016 arxiv: 1504.06073
For galaxy formation: Geometry matters !

Tuesday, 1November, 16



Merci !
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Evidences of galaxy spin - filament alignment

Jeju Oct 5th 2016

Tempel+ (2013)    in the SDSS
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Geometry of the vorticity cross-section

High vorticity regions are located 
at the edges of the filament
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Vorticity is aligned with filaments

Cosmic filament

Wall

Wall
direction of the filament

Vorticity

-- Part2: galaxies and their environment --
65
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Filaments are extracted with the DISPERSE code (Sousbie+11)

See also Libeskind+13, Wang+13
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Geometry of the vorticity cross-section

Theoretical prediction from  Pichon & Bernardeau 1999

Cross-sections are typically 
divided in 4 quadrants
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Geometry of the vorticity cross-section

High vorticity regions are located 
at the edges of the filament
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Halo spin-vorticity alignment
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back to 2D Theory 
without Hessian approximation
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